This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

SYNTHESIS OF CARBOCYCLIC ANALOGS OF 2',3'-DIDEOXYSANGIVAMYCIN, 2',3'-DIDEOXYTOYOCAMYCIN, AND 2',3'-DIDEOXYTRICIRIBINE

Kristjan S. Gudmundsson^a; Zhicheng Wang^a; Susan M. Daluge^a; Paul L. Feldman^a Division of Chemistry, Glaxo Wellcome Inc., NC, U.S.A.

Online publication date: 31 December 2001

To cite this Article Gudmundsson, Kristjan S. , Wang, Zhicheng , Daluge, Susan M. and Feldman, Paul L.(2001) 'SYNTHESIS OF CARBOCYCLIC ANALOGS OF 2',3'-DIDEOXYSANGIVAMYCIN, 2',3'-DIDEOXYTOYOCAMYCIN, AND 2',3'-DIDEOXYTRICIRIBINE', Nucleosides, Nucleotides and Nucleic Acids, 20: 10, 1823 — 1830

To link to this Article: DOI: 10.1081/NCN-100107193 URL: http://dx.doi.org/10.1081/NCN-100107193

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF CARBOCYCLIC ANALOGS OF 2',3'-DIDEOXYSANGIVAMYCIN, 2',3'-DIDEOXYTOYOCAMYCIN, AND 2',3'-DIDEOXYTRICIRIBINE

Kristjan S. Gudmundsson,* Zhicheng Wang, Susan M. Daluge, and Paul L. Feldman

Division of Chemistry, Glaxo Wellcome Inc., 5 Moore Drive, Research Triangle Park, NC 27709

ABSTRACT

Syntheses and antiviral activity of new carbocyclic analogs of 2', 3'-dideoxysangivamycin, 2',3'-dideoxytoyocamycin and 2',3'-dideoxytriciribine is described. The key intermediate, carbocyclic 4-chloro-5-iodopyrrolopyrimidine, was synthesized in good yield via a novel iodination method using I₂ and CF₃COOAg. This carbocyclic 4-chloro-5-iodopyrrolopyrimidine then allowed for a concise synthesis of the desired 4,5-disubstituted carbocyclic nucleosides.

INTRODUCTION

2',3'-Dideoxyribofuranosides have received considerable attention as this class of nucleosides includes several compounds with potent anti-HIV activity (e.g. ddC and ddI)¹. Besides the syntheses of the natural purine and pyrimidine analogs, several heterocycle-modified 2',3'-dideoxyribofurnosides, such as the pyrrolopyrimidines 2',3'-dideoxysangivamycin, 2',3'-dideoxytoyocamycin², and the tricyclic nucleoside triciribine³ have been synthesized. These have all demonstrated antiviral activity. We became interested in the

^{*}Corresponding author.

Figure 1.

synthesis of the carbocyclic dideoxy-analogs as these would have a more stable glycosidic bond. While many carbocyclic-2',3'-dideoxynucleoside analogs have been synthesized⁴, the carbocyclic analogs of 2',3'-dideoxysangivamycin, 2',3'-dideoxytoyocamycin and 2',3'-dideoxytriciribine, have to our knowledge not been reported.

Herein we describe a facile route for the synthesis of these 4,5-disubstituted pyrrolopyrimidines (1–3) via a novel carbocyclic 4-chloro-5iodopyrrolopyrimidine intermediate.

RESULTS AND DISCUSSION

Reduction of carbocyclic 4-chloropyrrolopyrimidine $\mathbf{4}^5$ with PtO_2/H_2 as outlined in Scheme 1 gave the cyclopentane $\mathbf{5}^6$, which was silylated or acetylated to give, respectively, $\mathbf{6}$ or $\mathbf{7}$. Table 1 outlines several conditions for attempted iodination of the protected pyrrolopyrimidines $\mathbf{6}$ and $\mathbf{7}$.

While iodination of furanose derivatives, corresponding to **5**, with NBS, NIS or ICl have been reported⁷, these conditions were unsuccessful in iodinating the carbocycle **5** or its protected derivatives. Treatment of **5**, **6** or **7** with NIS or I₂ under various conditions resulted in no reaction, while treatment of **6** or **7** with ICl required excess reagent and was complicated by gradual formation of several byproducts. When **6** was used as the substrate, the reaction was complicated by partial loss of the silyl protecting group. Addition of potassium carbonate to neutralize the reaction conditions (entry 4 in Table 1) did not improve the yield. Similarly, when **7** was treated with ICl in the absence or presence of base (entry 5 and 6 in Table 1, respectively) the desired product **9** was isolated in only low yield⁸.

Therefore, it was clear that the iodination of carbocyclic pyrrolopyrimidines required a more powerful iodination reagent than had previously been used for corresponding furanose derivatives. At this point our attention was turned to iodotrifluoroacetate⁹ as a more rigorous iodonium source.

Scheme 1. Reagents and conditions: (a) PtO₂, H₂ (30 psi), EtOH, r.t. quant. (b) TBSCl, pyr, DMAP, CH₂Cl₂, r.t., 90% (c) Ac₂O, pyridine, CH₂Cl₂, r.t., 77% (d) For conditions see Table 1.

We were pleased to observe that exposure of **6** or **7** to iodine in the presence of CF₃COOAg in CH₂Cl₂ (generating CF₃COOI), gave the desired 5-iodopyrrolopyrimidines (**8** and **9**, respectively) consistently in 70–80% yield (entries 7 and 8 in Table 1)¹⁰.

Subsequently, compound **9** was converted to the 4-chloro-5-cyano-pyrrolopyrimidine derivative **10** via palladium-catalyzed cross coupling with tributyltin cyanide ¹¹. Displacement of chlorine with ammonia followed by removal of the acetyl protecting group gave carbocyclic dideoxy-toyocamycin (**1**, Scheme 2). The carbocyclic dideoxysangivamycin (**2**) was formed in quantitative yield by treatment of **1** with H_2O_2 in aqueous ammonia. Carbocyclic dideoxytriciribine (**3**) was obtained by treating compound **10** with methylhydrazine in DMF, followed by deacetylation with potassium carbonate.

Table 1. Selected Conditions That Were Attempted for Iodination of 6 and 7, to Yield 8 or 9.

Entry	Starting Material	Iodinating Agent	Solvent	Other Reagents	Yield (% of 8 or 9)
1 ^a	6	NIS	CH ₂ Cl ₂	_	0
2^{a}	6	I_2	CH_2Cl_2	_	0
3	6	IC1	CH_2Cl_2	_	< 20
4	6	ICl	CH_2Cl_2	K_2CO_3	< 20
5	7	ICl	CH_2Cl_2	_	< 10
6	7	ICl	CH_2Cl_2	K_2CO_3	< 10
7	6	I_2	CH_2Cl_2	CF ₃ COOAg	76
8	7	I_2	CH_2Cl_2	CF ₃ COOAg	74

^aAlso attempted using CH₃CN and DMF as solvents.

AcO

$$AcO$$
 AcO
 Ac

Scheme 2. Reagents and conditions: (a) Bu₃SnCN, Pd(PPh₃)₄, ClCH₂CH₂Cl, reflux, 74%, (b) NH₃(l), 70°C, 3 days, (c) NH₃/MeOH, r.t., 77% from **10**, (d) NH₄OH, H₂O₂, r.t., 99%, (e) CH₃NHNH₂, DMF, reflux, (f) K₂CO₃, MeOH, H₂O, r.t., 92% from **10**.

Antiviral testing showed that none of these derivatives had activity separate from cytotoxicity against HIV¹². Compounds **1** and **2** had activity against HBV that was separate from cytotoxicity (for compound **1**: IC₅₀ $3 \mu M$ and CC₅₀ $42 \mu M$ and for compound **2**: IC₅₀ $0.7 \mu M$ and CC₅₀ $16 \mu M$), while compound **3** had no activity against HBV¹³. The synthetic strategy outlined above is currently being used for preparation of additional 4,5-disubstituted carbocyclic pyrrolopyrimidines to try to identify compounds with better separation between antiviral activity and cytotoxicity.

EXPERIMENTAL

Nuclear magnetic resonance (NMR) spectra were obtained at 300 MHz on Varian Unity Plus NMR spectrophotometer. The chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane as an internal standard. Elemental analysis were performed by Atlantic Microlab Inc. Flash column chromatography was performed using Merck Silica gel 60 (230–400 mesh), and the stated solvent system under pressure. Mass spectra were obtained on Micromass Platform mass spectrometers from Micromass Ltd., Altrincham, UK, using Electrospray Ionization.

[(1R,3S)-3-(4-chloro-7H-pyrrolo[2,3-d]pyrimidin-7yl)cyclopentyl]methanol (5)⁶. To a solution of [(1S,4R)-4-(4-chloro-7H-pyrrolo[2,3-d]pyrimidin-7yl)-2-cyclopentene-1yl]methanol ($\mathbf{4}^5$, 2.29 g, 9.17 mmol) in ethanol was added platinum (IV) oxide (0.25 g, 0.92 mmol). The suspension was shaken at room temperature for 16 h under 30 psi of hydrogen. The catalyst was removed by filtration. Concentration of the resulting filtrate gave compound $\mathbf{5}$ (2.3 g, quant.) as a clear oil: 1 H-NMR (CDCl₃): δ 8.61 (s, 1H), 7.38 (d, 1H), 6.61 (d, 1H), 5.18 (m, 1H), 3.72 (m, 2H), 2.46-2.26 (m, 3H), 2.02-1.78 (m, 4H); MS m/z 274 (M+Na).

[(1R,3S)-3-(4-chloro-7H-pyrrolo]2,3-d]pyrimidin-7yl)cyclopentyl]methyl acetate (7). To a solution of compound 5 (1.7 g, 6.75 mmol) in dry dichloromethane (15 mL) was added pyridine (5.4 mL, 67.5 mmol). Subsequently, acetic anhydride (1.0 g, 10.1 mmol) was added slowly to the reaction mixture. The mixture was stirred at room temperature for 16 h, water (30 mL) was added and the mixture stirred for additional 2 h. Ethyl acetate (100 mL) and additional water were added and the phases were separated, the organic phase washed with water and brine and dried over magnesium sulfate. Filtration and concentration followed by purification by flash chromatography (10% methanol in chloroform) gave 7 (1.52 g, 77%) as a clear oil: 1 H NMR (CDCl₃): δ 8.57 (s, 1H), 7.30 (d, 1H), 6.58 (d, 1H), 5.18 (m, 1H), 4.08 (m, 2H), 2.42 (m, 2H), 2.22 (m, 1H), 2.03 (s, 3H), 1.94 (m, 2H), 1.67 (m, 2H); MS m/z 316 (M+Na).

[(1R,3S)-3-(4-chloro-5-iodo-7H-pyrrolo]2,3-d]pyrimidinyl-7yl)cyclopentyl-methyl acetate (9). Iodine (1.42 g, 5.6 mmol in 15 mL of dichloromethane) was added dropwise to a solution of 7 (1.37 g, 4.65 mmol) and silver trifluoroacetate (1.65 g, 7.46 mmol) in dichloromethane (20 mL). Addition of the iodine resulted in formation of a yellow precipitate. The resulting suspension was stirred at room temperature for 1.5 h. Filtration and concentration followed by purification by flash chromatography (5–40% ethyl acetate-hexanes) gave compound 9 (1.45 g, 74%) as a white foam: 1 H NMR (CDCl₃): δ 8.54 (s, 1H), 7.44 (s, 1H), 5.15 (m, 1H), 4.08 (m, 2H), 2.40 (m, 2H), 2.23 (m, 1H), 2.04 (s, 3H), 1.91 (m, 2H), 1.64 (m, 2H); MS m/z 420 (M+H). Anal. Calcd for $C_{14}H_{15}N_{3}ClIO_{2}$: C, 40.10; H, 3.60; N, 10.01; Found: C, 40.61; H, 3.80; N 9.93.

[(1R,3S)-3-(4-chloro-5-cyano-7H-pyrrolo[2,3-d]pyrimidin-7yl)cyclopentyl-methyl acetate (10). Tributyltin cyanide (4.30 g, 13.6 mmol) and tetrakis(triphenylphosphine) palladium (0) (1.57 g, 1.36 mmol) were dissolved in dichloroethane (100 mL) and the resulting solution was heated at reflux for 30 minutes under nitrogen. Then 9 (2.86 g, 6.8 mmol) was added. The reaction mixture was heated at reflux for 24 h. Concentration followed by purification by flash chromatography (0–40%

ethyl acetate-hexanes) gave **10** (1.59 g, 76%) as a white crystalline solid: mp 117–119 °C; 1 H-NMR (CDCl₃): δ 8.73 (s, 1H), 8.00 (s, 1H), 5.21 (m, 1H), 4.14 (d, 2H), 2.53 (m, 2H), 2.38 (m, 1H), 2.09 (s, 3H), 2.03 (m, 1H), 1.79 (m, 2H), 1.63 (m, 1H); MS m/z 319 (M+H); IR (neat) 2235 cm⁻¹ (cyano). Anal. Calcd for $C_{15}H_{15}N_4ClO_2$: C, 56.52; H, 4.74; N, 17.58. Found: C, 56.55; H, 4.72; N, 17.63.

4-Amino-7-[(1S,3R)-3-(hydroxymethyl)cyclopentyl]-7H-pyrrolo[2,3-d]-D-2',3'-dideoxytoyocamycin, pyrimidine-5-carbonitrile (carbocyclic 1). Compound 10 (300 mg, 0.94 mmol) was placed in a steel bomb. Liquid ammonia was added to the bomb at -78 °C. The bomb was sealed and heated at 70 °C for 4 days with stirring. The bomb was subsequently cooled to -78 °C and opened. Methanol (5 mL) was added dropwise and the bomb was sealed again and allowed to stand at room temperature for 1 day. The bomb was cooled to $-78\,^{\circ}\text{C}$ and opened, the methanolic ammonia was allowed to evaporate slowly as the bomb warmed to room temperature. Ethyl acetate was added and the content of the bomb poured into a separation funnel. The organic phase was washed with a saturated sodium bicarbonate solution, water and brine. The organics were dried (MgSO₄), filtered and concentrated to give, after purification by flash chromatography (10% methanol-ethyl acetate), compound 1 (186 mg, 77%) as a white solid: mp 195–196°C; ¹H NMR (d_6 -DMSO): δ 8.37 (s, 1H), 8.21 (s, 1H), 6.79 (broad s, 2H), 5.01 (m, 1H), 4.62 (m, 1H), 3.41 (m, 2H), 2.29-2.07 (m, 3H), 1.91 (m, 1H), 1.76 (m, 1H), 1.63 (m, 2H); MS m/z 258 (M+H); IR (neat) $2217 \,\mathrm{cm}^{-1}$ (cyano). Anal. Calcd for $C_{13}H_{15}N_5O$: C, 60.69; H, 5.88; N, 27.22. Found: C, 60.36; H, 6.01; N, 26.84.

4-Amino-7-[(1S,3R)-3-(hydroxymethyl)cyclopentyl]-7H-pyrrolo[2,3-d]-pyrimidine-5-carboxamide (carbocyclic D-2',3'-dideoxysangivamycin, **2).** To a solution of compound **1** (18 mg, 0.07 mmol) in methanol (1 mL) was added 30% ammonium hydroxide (1 mL). The solution was cooled to 0 °C and 30% aqueous hydrogen peroxide (0.1 mL) was added. The reaction mixture was warmed to room temperature and stirred for 1 h. The solvent was removed under reduced pressure to give, after recrystallization from methanol, **2** as a crystalline solid (20 mg, quant): mp > 250 °C (dec.); 1 H-NMR (d_6 -DMSO): δ 8.80 (broad s), 8.09 (s, 1H), 8.01 (s, 1H), 7.78 (broad s, 1H), 7.19 (broad s, 2H), 4.93 (m, 1H), 4.56 (m, 1H), 3.37 (m, 2H), 2.21-2.06 (m, 3H), 1.75 (m, 2H), 1.59-1.47 (m, 2H); MS m/z 276 (M+H). Anal. Calcd for $C_{13}H_{17}N_5O_2$: C, 56.71; H, 6.22; N, 25.44. Found: C, 56.53; H, 6.23; N, 25.19.

[(1R,3S)-3-(5-amino-3-methyl-1,3,4,6,8-pentaazaacenaphthylen-1(3H)-yl)-cyclopentyl|methanol (carbocyclic D-2',3'-dideoxytriciribine, 3). To a solution of compound 10 (400 mg, 1.25 mmol) in dry DMF (20 mL) was

added methyl hydrazine (0.17 mL, 3.14 mmol). The reaction mixture was heated at reflux for 4h, then cooled to room temperature. The reaction mixture was concentrated, followed by purification with flash chromatography (10% methanol-chloroform) to give 348 mg (85%) of [(1R,3S)-3-(5-amino-3-methyl-1,3,4,6,8-pentaazaacenaphthylen-1(3H)-yl)cyc lopentyl|methyl acetate: ¹H-NMR (CDCl₃): δ 7.79 (s, 1H), 6.50 (s, 1H), 4.88 (broad s, 2H), 4.66 (m, 1H), 3.84 (m, 2H), 3.29 (s, 3H), 2.18 (m, 2H), 2.02 (m, 1H), 1.82 (s, 3H), 1.80-1.65 (m, 2H), 1.43 (m, 2H). The acetate derivative was dissolved in methanolic ammonia (1 M, 5 mL) and the solution was stirred at 40°C for 2 days in a sealed tube. Removal of volatiles, followed by purification by flash column chromatography (5-20% methanolchloroform) gave 3 (295 mg, 97%) as a yellow hygroscopic foam: ¹H-NMR (CDCl₃): δ 8.13 (s, 1H), 6.63 (s, 1H), 4.80 (m, 1H), 4.38 (broad s, 2H), 3.65 (m, 2H), 3.48 (s, 3H), 3.42 (s, 1H), 2.38 (m, 1H), 2.27 (m, 1H), 2.16 (m, 1H), 2.02 (m, 1H), 1.85 (m, 1H), 1.78 (m, 2H); MS m/z 287 (M+H). Anal. Calcd for $C_{14}H_{18}N_6O$: C, 58.73; H, 6.34; N, 29.35. Found: C, 58.49; H, 6.31; N, 29.25.

REFERENCES

- (a) Herdewijn, P.; Balzarini, J.; De Clercq, E.; Pauwels, R.; Baba, M.; Broder, S.; Vanderhaeghe, H. J. Med. Chem. 1987, 30, 1270–1278. (b) Huryn, D.M.; Okabe, M. Chem. Rev. 1992, 92, 1745–1768. (c) Mansour, T.S.; Storer, R. Current Pharmaceutical Design 1997, 3, 227–264.
- Krawczyk, S.H.; Townsend, L.B. Nucleosides and Nucleotides 1989, 8, 97–115.
- 3. Porcari, A.R.; Ptak, R.G.; Borysko, K.Z.; Breitenbach, J.M.; Vittori, S.; Wotring, L.L.; Drach, J.C.; Townsend, L.B. J. Med. Chem. **2000**, 2438–2449.
- (a) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, R.; Earl, R.A.; Guedj, R. Tetrahedron 1994, 50, 10611–10670. (b) Zhu, X.-F. Nucleosides, Nucleotides and Nucleic Acids 2000, 19, 651–690. (c) Daluge, S.M.; Martin, M.T. et al. Nucleosides, Nucleotides and Nucleic Acids 2000, 19, 297–327 and references therein. (d) Marquez, V.E. In Antiviral Drug Design; De Clercq, E., Ed.; JAI Press: Greenwich, Conn., 1996; Vol. 2, 89.
- 5. Legraverend, M.; Aubertin, A.-M.; Obert, G.; Huel, C.; Bisagni, E. Nucleosides and Nucleotides **1994**, *13*, 915–923 describes synthesis of racemic **4**. We used the same synthetic route for synthesis of the D isomer of **4**.
- 6. Montgomery, J.A.; Hewson, K. J. Med. Chem. **1967**, *10*, 665–667 describes synthesis of racemic **5**.
- 7. (a) Schram, K.H.; Townsend, L.B. J. Carbohydrates Nucleosides and Nucleotides 1975, 2, 177–184. (b) Pudlo, J.S.; Saxena, N.K.; Nassiri, R.M.; Turk, S.R.; Drach, J.C.; Townsend, L.B. J. Med. Chem. 1988, 31, 2086–2092. (c) Bergstrom, D.E.; Brattesani, A. Nucleic Acid Res. 1980, 8, 6213–6219 (for corresponding NBS reaction). (d) Turner, D.E.; O'Malley, R.F. J. Org. Chem. 1994, 59, 7335–7340. (e) Cocuzza, A.J. Tetrahedron Lett. 1988, 29,

- 4061–4064 and references therein (e) Cottam, H.B.; Kazimierczuk, Z.; Geary, S.; McKernan, P.A.; Revankar, G.R.; Robins, R.K. J. Med. Chem. 1985, 28, 1461.
- 8. These conditions are identical to the conditions described by Cocuzza (ref. 7e) for iodination of corresponding furanose analogs with ICl in the presence of base.
- (a) Barnett, J.R.; Andrews, L.J.; Keefer, R.M. J. Am. Chem. Soc. 1972, 94, 6129–6134.
 (b) Schmeisser, M.D.; Kurt, S.P. Chem. Ber. 1967, 100, 1633–1637.
 (c) Henne, A.L.; Zimmer, W.F. J. Am. Chem. Soc. 1951, 73, 1362.
 (d) Keefer, R.M.; Andrews, L.J. J. Am. Chem. Soc. 1956, 78, 5623–5627.
- 10. These iodination conditions gave identical yields for the silyl and the acetyl protected derivatives 6 and 7. We chose to use the acetyl protected derivative 7 for subsequent synthesis.
- 11. For references describing use of tributyltin cyanide see: (a) Nair, V.; Buenger, G.S. J. Am. Chem. Soc. **1989**, *111*, 8502–8504. (b) Anderson, B.A.; Bell, E.C.; Ginah, F.O.; Harn, N.K.; Pagh, L.M.; Wepsiec, J.P. J. Org. Chem. **1998**, *63*, 8224–8228.
- 12. Compounds were assayed for HIV activity in MT4 cells according to the method described by: Averett, D.R. J. Virol. Methods **1989**, *23*, 263–276.
- 13. Compounds were tested for anti-HBV activity according to the method described by: Jansen, R. et al. Antimicrobial Agents and Chemotherapy **1993**, *37*, 441–447.

Received February 7, 2001 Accepted June 12, 2001